302049: Artificial Intelligence & Machine Learning					
Teaching Scheme		Credits		Examination Scheme	
Theory	3Hrs./Week	Theory	3	In-Semester	30 Marks
Practical	2 Hrs./Week	Practical	1	End-Semester	70 Marks
				Oral	25 Marks

Prerequisites: Linear Algebra, Probability, Statistics, Logical Reasoning.

Course Objectives:

- 1. **ACQUAINT** with fundamentals of artificial intelligence and machine learning.
- 2. **LEARN** feature extraction and selection techniques for processing data set.
- 3. **UNDERSTAND** basic algorithms used in classification and regression problems.
- 4. **OUTLINE** steps involved in development of machine learning model.
- 5. **FAMILIARIZE** with concepts of reinforced and deep learning.
- 6. **IMPLEMENT AND ANALYZE** machine learning model in mechanical engineering problems.

Course Outcomes:

On completion of the course, learner will be able to

- CO1. **DEMONSTRATE** fundamentals of artificial intelligence and machine learning.
- CO2. **APPLY** feature extraction and selection techniques.
- CO3. **APPLY** machine learning algorithms for classification and regression problems.
- CO4. **DEVISE AND DEVELOP** a machine learning model using various steps.
- CO5. **EXPLAIN** concepts of reinforced and deep learning.
- CO6. **SIMULATE** machine learning model in mechanical engineering problems.

Course Contents

Unit 1 Introduction to AI & ML

06 Hrs.

History of AI, Comparison of AI with Data Science, Need of AI in Mechanical Engineering, Introduction to Machine Learning. **Basics:** Reasoning, problem solving, Knowledge representation, Planning, Learning, Perception, Motion and manipulation.

Approaches to AI: Cybernetics and brain simulation, Symbolic, Sub-symbolic, Statistical.

Approaches to ML: Supervised learning, Unsupervised learning, Reinforcement learning.

Unit 2 Feature Extraction and Selection

08 Hrs.

Feature extraction: Statistical features, Principal Component Analysis.

Feature selection: Ranking, Decision tree - Entropy reduction and information gain, Exhaustive, best first, Greedy forward & backward, Applications of feature extraction and selection algorithms in Mechanical Engineering.

Unit 3 Classification & Regression

08 Hrs.

Classification: Decision tree, Random forest, Naive Bayes, Support vector machine.

Regression: Logistic Regression, Support Vector Regression. **Regression trees:** Decision tree, random forest, K-Means, K-Nearest Neighbor (KNN). Applications of classification and regression algorithms in Mechanical Engineering.

Unit 4 Development of ML Model

07 Hrs.

Problem identification: classification, clustering, regression, ranking. Steps in ML modeling, Data Collection, Data pre-processing, Model Selection, Model training (Training, Testing, K-fold Cross Validation), Model evaluation (understanding and interpretation of confusion matrix, Accuracy, Precision, Recall, True positive, false positive etc.), Hyper parameter Tuning, Predictions.

Unit 5 Reinforced and Deep Learning

08 Hrs.

Characteristics of reinforced learning; Algorithms: Value Based, Policy Based, Model Based; Positive vs Negative Reinforced Learning; Models: Markov Decision Process, Q Learning. Characteristics of Deep Learning, Artificial Neural Network, Convolution Neural Network. Application of Reinforced and Deep Learning in Mechanical Engineering.

Unit 6 Applications

08 Hrs.

Human Machine Interaction, Predictive Maintenance and Health Management, Fault Detection, Dynamic System Order Reduction, Image based part classification, Process Optimization, Material Inspection, Tuning of control algorithms.

Books and other resources

Text Books:

- 1. Deisenroth, Faisal, Ong, Mathematics for Machine Learning, Cambridge University Press, 2020.
- 2. B Joshi, Machine Learning and Artificial Intelligence, Springer, 2020.
- 3. Parag Kulkarni and Prachi Joshi, "Artificial Intelligence Building Intelligent Systems", PHI learning Pvt. Ltd., ISBN 978-81-203-5046-5, 2015
- 4. Stuart Russell and Peter Norvig (1995), "Artificial Intelligence: A Modern Approach," Third edition, Pearson, 2003.

References Books:

- 1. Solanki, Kumar, Nayyar, Emerging Trends and Applications of Machine Learning, IGI Global, 2018.
- 2. Mohri, Rostamizdeh, Talwalkar, Foundations of Machine Learning, MIT Press, 2018.
- 3. Kumar, Zindani, Davim, Artificial Intelligence in Mechanical and Industrial Engineering, CRC Press, 2021.
- 4. Zsolt Nagy Artificial Intelligence and Machine Learning Fundamentals-Apress (2018)
- 5. Artificial Intelligence by Elaine Rich, Kevin Knight and Nair, TMH

Web References:

- 1. http://nptel.ac.in/courses/111101003/
- 2. https://nptel.ac.in/courses/106/106/106106202/
- 3. https://nptel.ac.in/courses/112/103/112103280/
- 4. https://www.analyticsvidhya.com/

Term Work

List of Experiments:

- 1. To study supervised/unsupervised/Reinforcement learning approach.
- 2. To acquire, visualize and analyze the data set (from time-domain/ frequency-domain/ etc.).
- 3. To extract features from given data set and establish training data.
- 4. To select relevant features using suitable technique.

OR

- 5. To use PCA for dimensionality reduction.
- 6. To classify features/To develop classification model and evaluate its performance (any one classifier).
- 7. To develop regression model and evaluate its performance (any one algorithm).
- 8. Markov process for modelling manufacturing processes.

OR

- 9. Reinforced Learning for optimizing engineering designs / Robot Guidance and Navigation.
- 10. GA for optimization of multi-dimensional function / path planning in robotics.

OR

11. NN for parameter and model identification / tuning of Control Algorithms.

Note:

- Students need to apply the computational algorithms using suitable software / programming language.
- Experiment 1, 2, 3, 6 & 7 are compulsory. Experiment 2 to 7 to be taken on same data set